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Abstract: This study investigates the influence of coarse aggregate (CA) type and shape on the 
compressive strength of concrete. Two types of coarse aggregates were used, i.e., basalt crushed and 
naturally rounded of 15 mm size. Eight concrete mixtures were designed according to four distinct 
concrete mix design (CMD) codes. A total of 64 concrete samples were prepared and tested under 
compression. The results show that concrete made with basalt CA achieved significantly higher CS 
(by 7% to 39%) compared to concrete made with natural CA, across different CMD codes. The 
incorporation of basalt CA enhanced the toughness and ductility of concrete, making it a better option 
for normal and medium-strength concrete structures. In addition to the experimental program, two 
ensembled machine learning (ML) models, i.e., extreme gradient boosting (XGB), and random forest 
(RF) were employed to forecast the CS of concrete. RF and XGB showed remarkable accuracy as 
evident by R2= 0.93 and R2= 0.92, respectively, and low error matrices. Moreover, the feature 
importance analysis identified cement content and CA type as the primary determinants of strength, 
while the water-cement ratio served as a crucial regulator.  

1. Introduction 
The impact of CA characteristics on the compression behavior of concrete is critical and needs 

extensive investigation. In the construction industry, the diverse utilization of CA is essential for 
enhancing the load-bearing capability and extending structural longevity. Coarse aggregates 
constitute 60%-80% of the concrete volume, making their role in concrete mix fundamental to 
mechanical properties [1]. Research has indicated that while CA size slightly affects the CS of 
concrete [2], the type and shape of CA significantly influence the concrete CS and energy dissipation 
[3–5]. Some studies have revealed that concrete with basalt CA provides superior CS and fracture 
energy compared with granite, limestone, and river gravel [6–8]. Basalt CA has been recognised to 
enhance the strength, permeability, and thermal conductivity of concrete [9]. These findings 
emphasize the importance of CA characteristics in optimizing concrete mechanical performance, 
providing a baseline for further research in this area. 

Modern infrastructure development relies heavily on concrete.  In addition to guaranteeing 
structural integrity, precise predictions of its mechanical characteristics also help to optimize material 
use, decline environmental impact, and increase the effectiveness of CMD [10]. ML models, 
especially ensemble approaches such as random forest (RF) and gradient boosting models have 
become more popular for their enhanced generalizability and accuracy, making them ideal for 
handling complicated data and producing reliable predictions [11]. Some common ML techniques 
employed to forecast the mechanical properties of concrete include RF, support vector machine, 
gradient boosting, and artificial neural networks [12-15]. These techniques have shown significant 
effectiveness in enhancing predictive accuracy in the prediction of concrete mechanical properties. 
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The advancement of ML techniques has significantly improved our understanding of concrete's 
mechanical behavior, enabling more accurate and efficient predictions for modern construction, 
including optimizing CMD, enhancing environmental sustainability, and project efficiency. 

In summary, the current study conducted a comparative experimental assessment using two types 
of CA (basalt and natural) of 15 mm size following four distinct CMD codes to evaluate their impacts 
on the compressive strength of concrete. Expanding on the experimental results, ML models (XGB 
and RF) were developed and trained on the experimental and literature dataset to (i) accurately predict 
28-day CS and (ii) clarify mechanistic drivers through feature-importance analysis. This integrated 
experimental–machine learning system offers useful insights on CA selection and mix proportioning, 
serving as a practical tool for data-driven decision-making in civil engineering. 

2. Experimental Program 
Ordinary Portland cement of 42.5 MPa grade strength was utilized as a binder. The fine aggregate 

was river sand with a specific gravity of 2.4, water absorption of 0.89%, fineness modulus of 2.22, 
and moisture content of 1.07%.  Basalt CA with a specific gravity of 2.7, water absorption of 1.1%, 
and natural CA with a specific gravity of 2.54 and water absorption of 0.56% were used. Tap water 
was used for concrete batching and curing. Four CMD codes were evaluated: the American Concrete 
Institute (ACI) code [16], the British (BS) code [17], the Indian (IS) code [18], and the Chinese (JGJ) 
code [19]. A total of eight concrete mixtures with a strength of 25 MPa were proportioned as shown 
in Figure 1. 

This program encompassed a total of 64 concrete samples, i.e., 32 cubes (150x150x150 mm) and 
32 cylinders of size (150x300 mm). The specimens were cured for 28 days and tested under axial 
compression. A universal compression test machine with a capacity of 1000 MPa was used to measure 
the CS of cubes at a loading rate of 0.3 MPa/sec. The cylinders were loaded at a steady rate of 0.3 
mm/min in displacement control mode, using a 1000 kN servo-hydraulic machine with a load drop 
of 100 kN/m2. Figure 2(a, b & c) illustrates the testing setup. 

 

Figure 1 Concrete mix proportions. 

 
(a). Specimen presentation 

 
(b). Testing of cubes 

 
(c). Testing of cylinders 

Figure 2 Testing setup. 
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3. Machine Learning Applications 
This research investigated the use of two robust ML models, i.e., XGB and RF, to validate the 

experimental program and predict the concrete strength properties. These models were chosen 
because of their strong applicability over a range of datasets, high-dimensional dataset management, 
and handling of nonlinear interactions. These models provide a complete toolset for solving a variety 
of regression problems in civil engineering applications. XGB is an ensembled ML technique often 
used for classification and regression problems due to its high efficiency and scalability. This 
technique was designed to combine several trained models, enhancing predictive accuracy beyond 
what individual models can achieve. XGB employs decision trees as base learners, and repeatedly 
improves its predictions by using gradient descent to optimize a loss function. The objective function 
and regularization terms are presented as in Equations 1 and 2. 

ℒ (∅) =  ∑ 𝑙𝑙 (y𝑖𝑖 , ŷ𝑖𝑖) 𝑛𝑛
𝑖𝑖=1 + ∑ Ω (ƒ𝑘𝑘) 𝐾𝐾

𝑘𝑘=1   (1) 

𝛺𝛺(ƒ𝑘𝑘) = 𝛾𝛾𝛾𝛾 + 1
2
𝜆𝜆‖ω𝑘𝑘‖2    (2) 

Where, 𝑙𝑙 (y𝑖𝑖 , ŷ𝑖𝑖) is loss function that measures the error between the true value y𝑖𝑖 and the predicted 
value ŷ𝑖𝑖. Ω (ƒ𝑘𝑘) is the regularization term that penalizes the complexity of the individual tree ƒ𝑘𝑘. n is 
the number of samples. K is the number of trees. The XGB model for concrete strength estimation 
can be presented as in Equation 3. 

𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋 = ∑ ƒ𝑘𝑘𝐾𝐾
𝑘𝑘=1 (𝑥𝑥)     (3) 

RF is an ensemble learning technique that builds a multitude of decision trees during the training 
phase and produces the class label (for classification) or the mean prediction (for regression) from 
the individual trees. RF enhances decision trees by minimizing variance, thereby increasing the 
model's resilience to overfitting. RF generates a collection of decision trees, each trained on a random 
subset of features and a random portion of training data, i.e., with bootstrapping. The Equation 4 
shows how the predictions generated by each tree are averaged to get the final outcome. 

Ŷ = 1
𝑇𝑇
∑ Ŷ𝑖𝑖𝑇𝑇
𝑡𝑡=1      (4) 

Where, Ŷ is the predicted result; T is the number of trees in the forest; Ŷi is the prediction from 
an individual tree (i=1, 2, ... n), n is the total number of trees. 

For ML models, the CS values of 28 days were computed. The preliminary dataset was established 
containing experimental data and relevant literature data of normal strength concrete. The specimen 
geometry did not lead to any bias in the ML model. A dataset containing 344 CS results was employed 
for the development of the ML models. The dataset was divided in 75% (training) and 25% (testing). 
The output parameter was CS, while the input variables were cement (kg/m3), water (kg/m3), sand 
(kg/m3), CA content (kg/m3), W/C ratio, and CA type. 

Statistical parameters, i.e., coefficient of determination (R2), mean absolute error (MAE), and 
mean squared error (MSE) were employed. These parameters are explained by their purpose, benefits 
and formulas, as given in Table 1. These statistical metrics assess model fitting and facilitate 
sensitivity analysis, thereby highlighting the significance of each input in the prediction process and 
offer a framework for comparing the performance of different algorithms. 

Table 1 Statistical parameters to assess ML models. 
Parameters Formula Purpose and Benefits 

R2 R2 = 1 − ∑ (𝑋𝑋𝑃𝑃𝑃𝑃−𝑋𝑋𝐸𝐸𝐸𝐸)2𝑛𝑛
𝑖𝑖=1

∑ �𝑋𝑋𝐸𝐸𝐸𝐸−𝑋𝑋𝐸𝐸𝐸𝐸�
2𝑛𝑛

𝑖𝑖=1
  

R2 is a measure of the model's ability to explain the data 
variability and ranges from 0 to 1. R2>80% indicate a good 
model fit. 

MAE 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑋𝑋𝐸𝐸𝐸𝐸−𝑋𝑋𝑃𝑃𝑃𝑃

𝑛𝑛
�𝑛𝑛

𝑖𝑖=1   
MAE provides a reliable and understandable measure of 
average error that is less susceptible to outliers than MSE and 
clarifies forecast accuracy. 

MSE  𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑋𝑋𝐸𝐸𝐸𝐸 − 𝑋𝑋𝑃𝑃𝑃𝑃)2𝑛𝑛
𝑖𝑖=1   MSE measures average squared deviation between the actual 

and predicted results. It is sensitive to large errors. 
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4. Results and Discussions 
4.1. Compressive Strength 

Figure 3 presents the CS of cube specimens made with Basalt and natural CA. The first letter of 
the specimen ID indicates the CMD code, the second letter indicates the specimen type, and third 
letter represents CA type and size 15 mm. The ACI-C-B15, BS-C-B15, IS-C-B15, and JGJ-C-B15 
specimens achieved 23.4%, 14.6%, 30.5%, and 8% higher CS than the designed CS, respectively. 
The natural CA cubes, ACI-C-N15, BS-C-N15, IS-C-N15, and JGJ-C-N15 exhibited 3.8%, 4.9%, 
17.7%, and 3% higher CS than the designed CS, respectively, confirming the accuracy of the CMD 
calculations. The CS results for cylinders incorporated with basalt and natural CA are presented in 
Figure 4. The basalt CA cylinders, i.e., ACI-L-B15, BS-L-B15, IS-L-B15, and JGJ-L-B15, offered 
notably higher CS, i.e., 30%, 25%, 39%, and 37% than the natural CA cylinders across the four CMD 
codes, respectively. Concrete with basalt CA offered significantly higher CS than natural CA concrete 
due to basalt CA’s higher crushing strength, shape, and surface texture. All these properties are 
involved in providing a strong bond between the cement matrix and CA, which results in superior 
compression characteristics. 

  
Figure 3 Compressive strength results of cube. Figure 4 Compressive strength results of 

cylinders. 

4.2. Performance Evaluation of ML Algorithms  
The ML models (XGB and RF) were developed using the Python Scikit-learn package. To 

guarantee consistent scaling, the Standard Scaler module from Scikit-learn was first used to 
standardize the dataset's features. The statistical parameters such as R2, MAE, and MSE, were 
employed to quantitatively assess the performance of these ML models. The graphical comparison of 
experimental and ML models’ predicted CS results is illustrated in Figures 5 and 6. The statistical 
analysis demonstrated that RF and XGB models consistently showed excellent prediction abilities. 
RF marginally surpassed the XGB with the highest R2 of 0.93, signifying enhanced fit and 
generalization capability. The XGB model obtained R2 of 0.92, showing that the model accounts for 
more than 92% of the variation in the experimental CS data. Furthermore, in the case of average 
prediction error compared to the actual CS values, RF and XGB both demonstrated excellent accuracy 
and resilience, with MAE error of 0.59. Furthermore, RF attained lower MSE= 0.94 as compared to 
XGB’s MSE= 1.07, underscoring its exceptional capacity to reduce significant discrepancies between 
predicted and actual CS results. This superior performance makes RF and XGB models as the most 
dependable ones for predicting the CS of concrete. Additionally, XGB’s impressive predictive 
accuracy positions it as a viable alternative, especially in situations where boosting methods are 
preferred. The feature importance analysis identified cement content and CA type as the most 
influential factors with importance scores of 0.36 and 0.30, respectively, while the water-cement ratio 
served as a crucial regulator with an importance score of 0.09. The amount of sand and gravel showed 
minor contributions in determining the CS of concrete. The feature importance analysis results are 
illustrated in Figure 7. 
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Figure 5 Actual and XGB model predicted 

CS 

 
Figure 6 Actual and RF model predicted CS 

 
Figure 7 Feature importance analysis: RF model. 

5. Conclusion  
1) Basalt CA concrete exhibited 7% – 39% higher compressive strength than concrete made with 

natural CA across four CMD codes, demonstrating the importance of CA type, mineralogy, and 
surface texture in concrete strength. 

2) Ensemble ML models reliably enhanced the experimental comprehension by demonstrating 
superior effectiveness in capturing nonlinear concrete mix-structure property relationships for 28-day 
CS prediction. This is evident by statistical analysis results as RF and XGB models attained R2 of 
0.93 and 0.92, respectively. Furthermore, RF and XGB both exhibited outstanding error matrices, i.e., 
MAE= 0.59 for both, and in the case of MSE, RF exhibited lower MSE= 0.94, as compared to XGB’s 
MSE= 1.07. 

3) The analysis of feature importance identified cement content as the primary positive factor, 
while the w/c ratio served as the key regulator. Additionally, the type of CA demonstrated a 
significant and consistent secondary impact. These clear rankings support the understanding of the 
roles played by hydration capacity, porosity control, and ITZ quality. 
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